首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30478篇
  免费   1376篇
  国内免费   2617篇
测绘学   1924篇
大气科学   3425篇
地球物理   5927篇
地质学   14859篇
海洋学   1686篇
天文学   1906篇
综合类   2719篇
自然地理   2025篇
  2024年   24篇
  2023年   89篇
  2022年   261篇
  2021年   316篇
  2020年   267篇
  2019年   293篇
  2018年   4964篇
  2017年   4254篇
  2016年   2885篇
  2015年   534篇
  2014年   421篇
  2013年   394篇
  2012年   1329篇
  2011年   3066篇
  2010年   2351篇
  2009年   2618篇
  2008年   2171篇
  2007年   2607篇
  2006年   292篇
  2005年   427篇
  2004年   566篇
  2003年   589篇
  2002年   459篇
  2001年   268篇
  2000年   279篇
  1999年   359篇
  1998年   363篇
  1997年   339篇
  1996年   250篇
  1995年   230篇
  1994年   222篇
  1993年   186篇
  1992年   141篇
  1991年   130篇
  1990年   81篇
  1989年   78篇
  1988年   81篇
  1987年   43篇
  1986年   46篇
  1985年   31篇
  1984年   35篇
  1983年   20篇
  1982年   22篇
  1981年   32篇
  1980年   32篇
  1979年   10篇
  1978年   2篇
  1977年   2篇
  1976年   6篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between ?2 and ?15 mmol m?2 d?1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m?2 for the upwelling season (May–September) and 6.8 mol m?2 y?1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.  相似文献   
992.
The state of the art of modeling fluid flow in shale reservoirs is dominated by dual-porosity models which divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control flow capacity. However, recent extensive microscopic studies reveal that there exist massive micro- and nano-pore systems in shale matrices. Because of this, the actual flow mechanisms in shale reservoirs are considerably more complex than can be simulated by the conventional dual-porosity models and Darcy’s law. Therefore, a model capturing multiple pore scales and flow can provide a better understanding of the complex flow mechanisms occurring in these reservoirs. This paper presents a micro-scale multiple-porosity model for fluid flow in shale reservoirs by capturing the dynamics occurring in three porosity systems: inorganic matter, organic matter (mainly kerogen), and natural fractures. Inorganic and organic portions of shale matrix are treated as sub-blocks with different attributes, such as wettability and pore structures. In kerogen, gas desorption and diffusion are the dominant physics. Since the flow regimes are sensitive to pore size, the effects of nano-pores and micro-pores in kerogen are incorporated into the simulator. The multiple-porosity model is built upon a unique tool for simulating general multiple-porosity systems in which several porosity systems may be tied to each other through arbitrary connectivities. This new model allows us to better understand complex flow mechanisms and eventually is extended into the reservoir scale through upscaling techniques. Sensitivity studies on the contributions of the different flow mechanisms and kerogen properties give some insight as to their importance. Results also include a comparison of the conventional dual-porosity treatment and show that significant differences in fluid distributions and dynamics are obtained with the improved multiple-porosity simulation.  相似文献   
993.
Of concern in the development of oil fields is the problem of determining the optimal locations of wells and the optimal controls to place on the wells. Extraction of hydrocarbon resources from petroleum reservoirs in a cost-effective manner requires that the producers and injectors be placed at optimal locations and that optimal controls be imposed on the wells. While the optimization of well locations and well controls plays an important role in ensuring that the net present value of the project is maximized, optimization of other factors such as well type and number of wells also plays important roles in increasing the profitability of investments. Until very recently, improving the net worth of hydrocarbon assets has been focused primarily on optimizing the well locations or well controls, mostly manually. In recent times, automatic optimization using either gradient-based algorithms or stochastic (global) optimization algorithms has become increasingly popular. A well-control zonation (WCZ) approach to estimating optimal well locations, well rates, well type, and well number is proposed. Our approach uses a set of well coordinates and a set of well-control variables as the optimization parameters. However, one of the well-control variables has its search range extended to cover three parts, one part denoting the region where the well is an injector, a second part denoting the region where there is no well, and a third part denoting the region where the well is a producer. By this, the optimization algorithm is able to match every member in the set of well coordinates to three possibilities within the search space of well controls: an injector, a no-well situation, or a producer. The optimization was performed using differential evolution, and two sample applications were presented to show the effectiveness of the method. Results obtained show that the method is able to reduce the number of optimization variables needed and also to identify simultaneously, optimal well locations, optimal well controls, optimal well type, and the optimum number of wells. Also, comparison of results with the mixed integer nonlinear linear programming (MINLP) approach shows that the WCZ approach mostly outperformed the MINLP approach.  相似文献   
994.
This paper presents a new method—the Technique of Iterative Local Thresholding (TILT)—for processing 3D X-ray computed tomography (xCT) images for visualization and quantification of rock fractures. The TILT method includes the following advancements. First, custom masks are generated by a fracture-dilation procedure, which significantly amplifies the fracture signal on the intensity histogram used for local thresholding. Second, TILT is particularly well suited for fracture characterization in granular rocks because the multi-scale Hessian fracture (MHF) filter has been incorporated to distinguish fractures from pores in the rock matrix. Third, TILT wraps the thresholding and fracture isolation steps in an optimized iterative routine for binary segmentation, minimizing human intervention and enabling automated processing of large 3D datasets. As an illustrative example, we applied TILT to 3D xCT images of reacted and unreacted fractured limestone cores. Other segmentation methods were also applied to provide insights regarding variability in image processing. The results show that TILT significantly enhanced separability of grayscale intensities, outperformed the other methods in automation, and was successful in isolating fractures from the porous rock matrix. Because the other methods are more likely to misclassify fracture edges as void and/or have limited capacity in distinguishing fractures from pores, those methods estimated larger fracture volumes (up to 80 %), surface areas (up to 60 %), and roughness (up to a factor of 2). These differences in fracture geometry would lead to significant disparities in hydraulic permeability predictions, as determined by 2D flow simulations.  相似文献   
995.
Multiobjective optimization deals with mathematical optimization problems where two or more objective functions (cost functions) are to be optimized (maximized or minimized) simultaneously. In most cases of interest, the objective functions are in conflict, i.e., there does not exist a decision (design) vector (vector of optimization variables) at which every objective function takes on its optimal value. The solution of a multiobjective problem is commonly defined as a Pareto front, and any decision vector which maps to a point on the Pareto front is said to be Pareto optimal. We present an original derivation of an analytical expression for the steepest descent direction for multiobjective optimization for the case of two objectives. This leads to an algorithm which can be applied to obtain Pareto optimal points or, equivalently, points on the Pareto front when the problem is the minimization of two conflicting objectives. The method is in effect a generalization of the steepest descent algorithm for minimizing a single objective function. The steepest-descent multiobjective optimization algorithm is applied to obtain optimal well controls for two example problems where the two conflicting objectives are the maximization of the life-cycle (long-term) net-present-value (NPV) and the maximization of the short-term NPV. The results strongly suggest the multiobjective steepest-descent (MOSD) algorithm is more efficient than competing multiobjective optimization algorithms.  相似文献   
996.
In this paper, we present a semi-implicit method for the incompressible three-phase flow equations in two dimensions. In particular, a high-order discontinuous Galerkin spatial discretization is coupled with a backward Euler discretization in time. We consider a pressure-saturation formulation, decouple the pressure and saturation equations, and solve them sequentially while still keeping each equation implicit in its respective unknown. We present several numerical examples on both homogeneous and heterogeneous media, with varying permeability and porosity. Our results demonstrate the robustness of the scheme. In particular, no slope limiters are required and a relatively large time step may be taken.  相似文献   
997.
This work considers the well placement problem in reservoir management and field development optimization. In particular, it emphasizes embedding realistic and practical constraints into a mathematical optimization formulation. Such constraints are a prerequisite for the wider use of mathematical optimization techniques in well placement problems, since constraints are a way to incorporate reservoir engineering knowledge into the problem formulation. There are important design limitations that are used by the field development team when treating the well placement problem, and these limitations need to be articulated and eventually formalized within the problem before conducting the search for optimal well placements. In addition, these design limitations may be explicit or implicit. In this work, various design limitations pertaining to well locations have been developed in close collaboration with a field operator on the Norwegian Continental Shelf. Moreover, this work focuses on developing constraint-handling capability to enforce these various considerations during optimization. In particular, the Particle Swarm Optimization (PSO) algorithm is applied to optimize for the well locations, and various practical well placement constraints are incorporated into the PSO algorithm using two different constraint-handling techniques: a decoder procedure and the penalty method. The decoder procedure maps the feasible search space onto a cube and has the advantage of not requiring parameter tuning. The penalty method converts the constrained optimization problem into an unconstrained one by introducing an additional term, which is called a penalty function, to the objective function. In contrast to the penalty method, only feasible solutions are evaluated in the decoder method. Through numerical simulations, a comparison between the penalty method and the decoder technique is performed for two cases. We show that the decoder technique can easily be implemented for the well placement problem, and furthermore, that it performs better than the penalty method in most of the cases.  相似文献   
998.
The thermal profile of a streambed is affected by a number of factors including: temperatures of stream water and groundwater, hydraulic conductivity, thermal conductivity, heat capacity of the streambed, and the geometry of hyporheic flow paths. Changes in these parameters over time cause changes in thermal profiles. In this study, temperature data were collected at depths of 30, 60, 90 and 150 cm at six streambed wells 5 m apart along the thalweg of Little Kickapoo Creek, in rural central Illinois, USA. This is a third-order low-gradient baseflow-fed stream. A positive temperature gradient with inflection at 90-cm depth was observed during the summer period. A negative temperature gradient with inflection at 30 cm was observed during the winter period, which suggests greater influence of stream-water temperatures in the substrate during the summer. Thermal models of the streambed were built using VS2DHI to simulate the thermal profiles observed in the field. Comparison of the parameters along with analysis of temperature envelopes and Peclet numbers suggested greater upwelling and stability in temperatures during the winter than during the summer. Upwelling was more pronounced in the downstream reach of the pool in the riffle and pool sequence.  相似文献   
999.
1000.
The geochemical cycles of iron and sulphur in marine sediments are strongly intertwined and give rise to a complex network of redox and precipitation reactions. Bioturbation refers to all modes of transport of particles and solutes induced by larger organisms, and in the present-day seafloor, bioturbation is one of the most important factors controlling the biogeochemical cycling of iron and sulphur. To better understand how bioturbation controls Fe and S cycling, we developed reactive transport model of a coastal sediment impacted by faunal activity. Subsequently, we performed a model sensitivity analysis, separately investigating the two different transport modes of bioturbation, i.e. bio-mixing (solid particle transport) and bio-irrigation (enhanced solute transport). This analysis reveals that bio-mixing and bio-irrigation have distinct—and largely opposing effects on both the iron and sulphur cycles. Bio-mixing enhances transport between the oxic and suboxic zones, thus promoting the reduction of oxidised species (e.g. iron oxyhydroxides) and the oxidation of reduced species (e.g. iron sulphides). Through the re-oxidation of iron sulphides, bio-mixing strongly enhances the recycling of Fe and S between their reduced and oxidised states. Bio-irrigation on the other hand removes reduced solutes, i.e. ferrous iron and free sulphide, from the sediment pore water. These reduced species are then reoxidised in the overlying water and not recycled within the sediment column, which leads to a decrease in Fe and S recycling. Overall, our results demonstrate that the ecology of the macrofauna (inducing bio-mixing or bio-irrigation, or both) matters when assessing their impact on sediment geochemistry. This finding seems particularly relevant for sedimentary cycling across Cambrian transition, when benthic fauna started colonizing and reworking the seafloor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号